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We deduce a class of spatiotemporal periodic orbits in locally to globally coupled map lattices, from
the known orbits with smaller phase spaces, without analytically and numerically solving the modeling
equations. The stability of the deduced orbits is investigated and we can reduce the problem to analyze
much smaller matrices corresponding to the building block of their spatial periodicity or to the building
block of the spatial periodicity of the original orbits from which we construct the new orbits. In the
two-dimensional case the problem is considerably simplified.
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I. INTRODUCTION

Coupled nonlinear systems have recently activated
great interest and various studies have been carried out
on them [1-23]. The investigation mainly focuses on two
directions. One is coupled map lattices (CMLs) [1-16],
which are coupled by discrete maps and possess the ad-
vantage of being easy to handle analytically and numeri-
cally. The other is the coupled nonlinear oscillators
[17-23], which are coupled by a set of ordinary
differential equations and can model systems exactly.

The CML is more idealized than realistic. But the
study of CMLs can give a deep understanding of the
basic properties of systems with many degrees of free-
dom. A rich spectrum of universality classes has been
found that includes frozen random patterns, pattern
selections with suppression of chaos, spatiotemporal in-
termittency, supertransients, traveling waves, etc. It has
been used to model the phenomena in spatially extended
systems such as turbulence in hydrodynamics, spatiotem-
poral intermittency and spiral waves in real-life systems
[10,11], and crystal growth [12]. It has also been used to
model the evolution of genetic sequences in biology [13]
and the spatiotemporal behavior of chemical reactions
[14]. The CML model has been successful in modeling
the dynamics in a computationally more efficient manner;
for example, it has been developed as an efficient scheme
of simulating the kinetics of important equations in
phase-ordering processes such as Cahn-Hilliard and
time-dependent Ginzburg-Landau equations [15,16].
Furthermore, some physical experiments have also been
carried out on coupled nonlinear oscillators of which the
results are in good agreement with the CML models [17].

Coupled nonlinear oscillators are much more realistic
than CMLs, but more difficult in a mathematical aspect.
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Practical examples are coupled p-n junctions [17], cou-
pled pendulums [18], coupled Josephson-junction arrays
[19], electronic oscillator circuits [20], charge-density
waves [21], coupled laser arrays [22], multimode lasers
[23], and some chemical reaction systems [11]. These sys-
tems have the great potential of practical applications.
Many interesting phenomena have been revealed theoret-
ically and experimentally in recent investigations, such as
splay-phase states, noise sensitivity, spatiotemporal inter-
mittency, attractor crowding, etc. Thus an understand-
ing of the dynamical properties of these systems is obvi-
ously of theoretical and experimental importance.

In this paper we will be dealing with a special class of
spatially periodic states in symmetrically coupled non-
linear systems by concretely employing CML models.
Similar investigations can be carried out in systems of
coupled nonlinear oscillators. We first predict a special
class of spatially periodic orbits from the spatial period-2
orbits in the one-dimensional CML, and the stability of
the predicted orbits is discussed in Sec. II. In Sec. III
some examples are presented and discussed to demon-
strate our arguments in Sec. II. In Sec. IV we deduce a
class of spatially periodic orbits in the two-dimensional
CML from the ones existing in the one-dimensional
CML, and we demonstrate that the analysis of their sta-
bility can be reduced to the problems of analyzing that of
the one-dimensional building blocks.

II. ONE-DIMENSIONAL CASE

In this section we address the problems of how to
deduce a spatially high periodic orbit from a low periodic
one in a CML according to its symmetry and how its sta-
bility relates to the low periodic one. We consider, for in-
stance, the following symmetrical CML model:
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% i D=F 12D+ 3 {glx, i +)] gk, (D]} ,

j==s
J#0

(1)

where f(x) and g (x) are some maps such as a tent map,
logistic map, circle map, etc.; x, (i) is the variable associ-
ated with the ith lattice site at the nth iteration; €
represents the diffusion constant and s the coupling
length. Periodic boundaries are always assumed, i.e.,
x,(i)=x,(i +L) with L being the system size. The CML
(1) is degenerate if f(x)=g(x). If s =L —1, the CML (1)
is a globally coupled map lattice (GCML), which has
been widely investigated by Kaneko [3].

In order to deduce spatially high periodic orbits for the
CML (1) we first consider the most widely studied CML
model [1,2,5-8]

X 1= [xa D]+ (g2 00 = 1]

+g[x,(i+1]—2g[x,(D)]} . 2)

Many inhomogeneous periodic orbits can be obtained
from the CML (2) analytically and numerically [5-8].
Here we pay attention to the spatial period-2 orbits for
our special purposes. [In this paper we denote the spa-
tiotemporally periodic orbits in the one-dimensional
CML S, (k,s,R), where M is the temporal periodicity, k
the spatial periodicity, s the coupling length, and R the
replicas of the spatial periodicity, i.e., R=L /k.] Assum-
ing an Sp(2,1,R) orbit, (¥,Z,VmZm """ VmZm)
m=1,2,...,M, exists in the CML (2), where we define
Ym =V (€) and z,, =z, (€) as functions of € only. Insert-
ing y,, and z,, into Eq. (2) we obtain

zm+1=f(zm)+e[g(ym)_g(zm)] . (3)

Instead of solving Eq. (2) directly we can deduce, from
the S),(2,1,R) orbit, an Sy, (4,1,R) orbit. Assuming an
Sp(4,1,R) orbit, (¥ VmZmZmVmVmZmZm " YmVmZmZm )
m=1,2,...,M, exists in the CML (2) and provided
x,()=x,(i +1)=y, #x,(i —1)=z,,, we obtain that y,,
and z,, satisfy

z,;+,=f(z;n>+§[g(y,',,)—g(z;,,)] . )

Comparing Eq. (3) with Eq. (4), we find that if we substi-
tute € by 2¢ in Eq. (4) we can obtain at once that y,, =y,
and z,, =z, or in another way, y, (€)=y, (e/2) and
z,,(€)=z,,(e/2). Thus we can conclude that if there ex-
ists an S,,(2,1,R) orbit at e=¢, in the CML (2), there
must be an S),(4,1,R) orbit at e=2¢, (here we imply that
the system size is not fixed but can be changed to satisfy
the condition for the orbit to exist, and this assumption is
maintained throughout all our investigations in this pa-
per). We cannot construct other similar orbits in the
CML (2) from the S,,(2,1,R) orbit. But for the CML (1)
we can construct a series of such orbits [denoted as
Sm(2N,s,R)],
N N

(ymym . .ymzmzm ..

Zp ¥ ) 5)

13

from the S,,(2,1,R) orbit with y,, and z,, satisfying
2m+]:f(zm)+Be[g(ym)_g(zm)] ) (6)

where B is the scaling factor of the diffusion constant,
which has two possible values 1 and (s +1)/2s, and the
state variables are y,, =y,, (Be). Equation (6) means that
if there exists an S,,(2,1,R) orbit at e=¢, in the CML
(2), there may be an S),(2N,s,R) orbit at e=¢,/B in the
CML (1). With careful study we find that B generally
satisfies

(nonexistent) , s=kN+1, i=1,2,...,N—=2
4, s=Q2k+1)N—-1
s+1 _

g=125 s=(2k+1)N (7a)
s+1

, s=QR2k+2)N—1
2s

1, s=(2k+2N

(where k=0,1,2,3,...) for S(2N,s,R) orbits. For
Sy (2,s,R) orbits, B simply satisfies

s+l (odd s)

B= o
1 (evens) . (7b)

An exception that is not included in Egs. (7) is the case
of s=L —1, i.e., the case of the GCML. It is very in-
teresting that in this case any spatial configuration of the
states y,, and z,, is a solution of Eq. (1) due to its symme-
try, only requiring that the total numbers of the states y,,
and z,, are equal. Therefore, if there exist Sy,(2,1,R) or-
bits, it implies that there are L!/[(L /2)!]? orbits existing
in this case, including all possible spatially periodic orbits
Sy(2N,L —1,R) (i.e., N can range from 1 to L /2) and
frozen random patterns. And all the orbits in the GCML
have B=L/2(L —1) no matter how the spatial
configuration is. Therefore, all orbits belonging to this
special class are predicted from the spatial period-2 orbit
for the locally to globally coupled map lattices.

The study of the periodic orbits in the CMLs has been
carried out by several authors [4-7]. Amritkar et al. [5]
have given a general discussion about how to analyze the
stability of a spatially periodic state and have reduced the
problem of analyzing the stability of a spatially periodic
orbit to that of analyzing matrices corresponding to the
building blocks of spatial periodicity. In this study we
construct spatially periodic orbits from the S, (2,1,R)
orbit. A problem arising is whether one can relate the
analysis of the stability of the constructed orbits to that
of the S),(2,1,1) orbit, i.e., to analyze NR 2X2 matrices.
Unfortunately, we cannot do that in general. We may
follow Amritkar’s way to analyze the stability of most the
constructed orbits by analyzing 2N X2N matrices. But
we are able to simplify the problem in some cases. For
example, we can analyze the stability of the orbits
Sy(2N,s,1), Sy (2N,L/2,R), and S,(2N,L —1,R) and
all the random patterns in the GCML by dealing with
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2X2 matrices instead of the 2NR X2NR matrix or
2N X2N matrices. We are involved in this problem at
this moment.

Denoting
- df [x,(i)]
! dx, (i) |x, )=y,
A [x,(0)]
dx, (i) |x )=z,
(8)
o B850
P dx, (i) [x =y,
S {EA0)
2 dx, i) |x 0=z,
and the stability Jacobi matrix
J=J1J2"'JM_IJM, (9)

we first perform a permutation transformation on the
Jacobi matrix J, i.e.,

J'=PJP '=PJ, P 'PI,P "' PJy P PP
=JJ5 Iy - (10

By properly choosing transformation matrix P,
J,, (m=1,2,...,M) can be cast into a block circulant

matrix C with each block being a 2 X2 matrix and may be
written as

J.=bC(A,,Bip>Bams- - »Brg—1m) - 11

J,, can be put into a block-diagonal form further by a
unitary transformation [5,24]. Thus the block-diagonal
form of the product matrix J=J,J, * - - Jy _Jy, is

J'=ITy T
M
I1 .. 0 0
=1
M 2
0 Dm . e 0
mll] (12)
L
0 0 I1 DR
m=1
where
D;*l=4 +in1ka (13)
m m rPkm
k=1
and

wF=exp(i2mrk /NR)=exp(ik0) ,
r=0,1,2,...,NR—1. (14)
For s =L /2, we have

D.*'=4, —B, +C,explih0) (15a)

forr=1,2,...,NR —1, while

D)=4,+(NR—-1B,+C,, , (15b)
where
m m e m
Fl —GGl EGZ
A, = € ,
EGT F7—eGY
(16)
€ m € ~m
2s 1 25 2
Bm_ iGm € m b
2s ' 25 ?
and
€
0 —G7
2s
€ when = s;-l
260 0 ’
C,= € o (17)
2s ! .
o € m when B=3 .
2s 2

Here h =[(NR +1)/2] indicates the integer part. There-
fore, to determine the stability of the orbits
Spy(2N,L /2,R) we only need to analyze the NR 2X2
matrices:

M
D(O)=1]] [4,,—B,, +C,exp(ih6)]

m=1

for 6=27/NR, 4w /NR, ...,27(NR —1)/NR, while

(18a)

M
D(0)=1]][ [4,,+(NR—1)B, +C,,]
m=1
IL | peoy

m=1

BeGY
FT —BeGY (18b)

Similarly, for S, (2N,L —1,R) orbits and all the random
patterns in the GCML, we get

M
D(6)=T[ (4,,—B,,) (19a)
m=1
for =27 /NR, 4w /NR, ...,2m(NR —1)/NR, while
M
D(0)= [J [A,,+(NR —1)B,,]
m=1
M |FT'—BeG7V BeGT
_,,,I=I| BeGT  FP—pecy | (19b)

where
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4,=| ,
:G'I" F'Z"'—EGE"
. . (20)
Pl m —-— m
B SG1 SG2
mNE m € m
sz st

It is interesting to note that only four eigenvalues can be
obtained no matter how large the phase space is. Denot-
ing the two eigenvalues of the orbit Sy,(2,1,1) as AJ(e)
and kg(e), the two eigenvalues obtained from D (0) for
these orbits are just A%(Be) and AY(Be). The two eigenval-
ues obtained from D(6) are

M
Ale)=[1 (FT—2BeGT) ,
m=1

M @n
Ale)= [ (FF—2BeG?y) .

m=1

Because 6 has NR —1 different values other than O, the
degeneracy of the states is at least NR —1. In addition,
we can see from Egs. (19) and (21) that all the orbits for a
fixed system size L have the same stability property
without considering their spatial configurations because
B=L /2(L —1) for all the orbits in the GCML.

For the S,,(2N,s,1) orbits, the analysis is a little more
complicated because the Jacobi matrix J would be
different for different coupling length s. But we are able
to reduce the problem to analyze N 2X2 matrices other
than a 2N X2N matrix. For example, we get for
s=N-—1

M
D)= [ (4,,—B,,) (22a)

m=1

for 8=27/N, 4w /N, ...,2w(N —1)/N, while

J

M

D)= [T [4,,+(N—1)B,,]
m=1
m |FT'—BeGT BeG7Y
"I | peey  Fp-pecy|c @
where
FT'—eGT 0
Am= m m ’
0 F2 _er
€ € (23)
—_— m = m
B 2s ! 2st
" Egm Egm
25 1 25 2

This state is a degenerate state with degeneracy being at
least N — 1.

Although we cannot investigate the stability of all the
Su(2N,s,R) orbits by investigating 2X2 matrices, one
conclusion can be made that the stable regions of
Sy (2N,s,R) orbits cannot exceed the interval (e_ /B,
€.+ /B), where (e_,e ) is the stable region of the orbit
Sy (2,1,1), because for all the constructed orbits we can
get

M |F{'—BeGY
DO=TI | pegr

m=1

BeG7'

FJ'—BeGT (24)
The two eigenvalues are just A)(Be) and AJ(Be). This in-
dicates that the stability of the constructed orbits cannot
be better than that of the S,,(2,1,1) orbit, or, in other
words, the orbits constructed from an unstable orbit must
be unstable.

III. EXAMPLES

Here we consider a degenerate coupled logistic lattice
of which f(x)=g(x)=ax(1—x) as a concrete example.
This model has been widely discussed by many authors
[1,2,5-7]. Inserting f(x) into Eq. (2), an S,(2,1,1) orbit
is obtained:

+a —2ae+[(1+a—2a€)*—4(1—€)1+a—2ae)]'?

=y (=1
Y= 2a(1—2¢)

1+a—2ae—[(1+a—2a€)*—4(1—€)(1+a—2ae)]'”?

’

(25)

21 =7 (6)= 2a(1—2¢)

, yole)=z,(€) z,(e)=yp,(€),

which is an antiphase state. This orbit exists when a =3, which is just the period doubling point of a single logistic

map. The two eigenvalues of the stability Jacobi matrix are

172
+(1—2¢€)a(2—a)

€ (2—3¢)?
Ay ,= +
b2 1—2e 7 | (1—2¢)?

and the stability boundaries satisfy

(26)
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. —2a —2)—3—{[3+2a(a—2)>—4ala —2)(a —1)*}'

- 4a(a —2)

_1-[3/(a®>—2a)]'
€+_ 2 .

Hopf bifurcation occurs at the lower bound e€_ and
tangent bifurcation at the upper bound €,. As demon-
strated by Amritkar et al. [S], the lower boundaries €_
would be slightly different for orbits S,(2,1,R) with
different replicas, and a wavelength doubling bifurcation
is observed [6).

With the solution Eq. (25), we can predict that all the
orbits belong to the special class. These predicted spa-
tiotemporal orbits are all antiphase states or traveling
waves with velocity N, except the random patterns in the
GCML. As an example, we show two orbits of the
GCML case in Fig. 1 (L =30).

The stability of an R replica solution can be, in general,
reduced to the problem of illustrating R 2N X2N ma-
trices [5]. But for the three cases discussed in Sec. II the
stability of an orbit can be cast into the problem of illus-
trating NR 2X?2 matrices, which can be analytically han-
dled thoroughly. In the following we investigate analyti-
cally and numerically the stability of some of the orbits.

We first investigate the stability of the orbits in the
GCML case in an analytical way. Using Eqs. (19b) and
(21), the four eigenvalues obtained are

_ 2 172
)\’?2= I_B;BG E?_;ZZ;Z +(1—236)a(2_a) >
(28)
M ,=—aX1—2Be)*—2a (1—2B¢)
+4(1—Be)(1+a—2apPe) , (29)

1.0

"4 0.5

(S S N O Y TN |

(a)

0.0 LN B B S (NN B B R B N B B A |
0 10 20 30
i

1.0
xo.slm
1 (b)
0.0 T T T T T T T T T T T T T
30

i
FIG. 1. Part of the predicted orbits in a coupled logistic
GCML for L =30, a =4, and €=0.15. B=1. (a) 5,(6,29,5);
(b) random patterns.

(27)

where B=L /2(L —1). These states are degenerate states
with degeneracy 2(NR —1) other than NR —1. By a de-
tailed study we find that for any system sizes the stability
of these orbits is governed by Eq. (28), requiring
€e€[0,1], and thus the stability boundary is
(e_/B,e, /B). Hopf bifurcation occurs at e€_/B and
tangent bifurcation at €, /B. Equation (29) introduces no
further conditions for the stability of these orbits in this €
interval.

Besides the case of the GCML, we have also numeri-
cally checked the stability of S,(4,1,R) and S,(4,2,R)
orbits. We find no other conditions being introduced for
the stability of these orbits. The stable regions of these
orbits are just [e_/B,e, /B], in which Hopf bifurcation
occurs at €_/f3 and tangent bifurcation at €, /8. Here
we also have e€[0,1].

IV. TWO-DIMENSIONAL CASE

In this section we only discuss the case of a nearest-
neighbor coupled two-dimensional CML. The modeling
equation is [4]

Xy 1(u,0)=f[x,(u,v)]
+§{g[x,,(u —Lv)]+glx,(u +1,v)]

+g [xn(u’v —1)]+g [xn(uav +1)]
—4g [x,(u,0)]} . (30)

The boundary condition is still assumed to be periodic
and the system volume is L,L,. Many spatiotemporally
periodic orbits can be obtained by analytical and numeri-
cal methods. Here we denote these orbits as
Sy(N,,N,;I,J) with N, and N, the periodicities in u and
v directions, respectively. I and J are the replicas of the
periodicity in the u and v directions, respectively, i.e.,
I=L,/N,and J=L,/N,. Here we construct spatiotem-
porally periodic orbits from known orbits in the CML (2)
instead of solving Eq. (30) analytically or numerically.
For example, five spatial patterns can be formed from the
Sy(2,1,1) orbit, which are shown in Fig. 2. The state
variables y,, and z,, also satisfy

zm+l=f(zm)+BE[g(ym)_g(Zm )] . 31

A general case is that if there is an Sy (N, 1,R) orbit
(xTxTxP - xgxT -+ - xy) in the CML (2) we can form
two patterns in the CML (30): S,(1,N,I,J) and
Sy (N,N,1,J) (Fig. 3). The state variables satisfy
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FIG. 2. Spatial patterns predicted from the S),(2,1,1) orbit.
Pixels are black when x,(u,v)=y, and white when
x,(u,v)=2,. The system volume is 20X20. (a) S)(2,2;10,10),
B=1; (b) 5,(1,2;20,10), B=1; © Sk(4,4;5,5), B=1; @
Su(1,4;20,5), B=1; (e) Sy(4,2;5,10), B=13.

xPH =f(xT)+Belg(x" ) +g(xm)—2g(x™)], (32)

with =1 and 1 for Sy (N,N;I,J) and Sy(1,N;1,J), re-
spectively. From this general result, it is reasonable that

we can form, in the CML (30), two patterns from the
Sy(2,1,R) orbit [Figs. 2(a) and 2(b)] and two from the

m n »n | ]
x, X, X, .o Xy
m n m n
X, X, X, N X,
‘A S
L n m n
Xn-1] *n X, © | XN-2
m mn n mn
| X ] %2 . Xn-1
u

FIG. 3. Sy(N,N;ILJ) (B=1) orbit predicted from the
Su(N,1,1) orbit. x” (i=1,2,...,N) represent the states of the
lattice sites.

Su(4,1,R) orbit [Figs. 2(c) and 2(d)]. But due to the
specialty of the spatial periodicity an additional pattern is
constructed [Fig. 2(e)].

Although we can predict several patterns in the CML
(30) from the orbits in the CML (2), there is still the ques-
tion of how the stability of these patterns relates to those
of the one-dimensional orbits. We are to investigate this
problem below.

The stability of the S,,(1,N,;1,J) orbits can be ana-
lyzed in the same manner as that carried out in Ref. 5.
We only try to analyze the stability of the Sy (N,N;1,J)
orbits. We write down the variational form of the CML
(30):

Sx,,+1(u,v)=f,:l,8xn(u,v)+—E[g,:_l,ﬁx,,(u —1,v)+g, +1,0%,(u +1,v)

+8u —18x,(u,v —1)+g,, 4 8x,(u,v +1)—4g, 8x,(u,v)], (33)

where we denote

o= of [x,(u,v)] -
w ax,,(u,v) x, (u,0)=x" Lo
(34)
. _ 98[x,(u,0)] —gm
w ox, (u,v) x, (u,0)=x" b

We denote all the state variables in the v direction for the
same u as a vector:

X, (w)={x,,(u,1),x,(4,2), ...,%,(u,L,)} (35)
and write Eq. (33) in the vector form as
8%, +1(u)=A"8%, (u)+B: 8%, (u—1)

+BL 18R, (u+1) . (36)

[

Looking at the fact that the vectors f,,,(u),

u=1,2,...,L,, have the following property:

X, (w)=TX, (u —1)=T*"'%, (1), 37
where

r=co,1,0,...,0), (38)
we have

A4=T Ay~ 'r=r*"'4, 774",

BY=T"'g:~Ip=pr+-1glp-u+l (39)
m m m .

We rewrite Eq. (36) as
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- t18f, (W) =D"* 14, T* 10168 (u)+ T “+'BLIT* 2L “*2%8, (u —)+T* ' BE'TT 7468, (u +1)

=AT*+168 (w)+TBLT“*2%%, (u —1)+T'BAT "X, (u +1) . (40)
—
Thus it is reasonable to do a Fourier transformation, for 0 € Gr 0 0
. (40), of the discrete series I"‘—l&fm(u) instead of 4
8X,,(u) and we can reduce the problem of investigating B+=1o o Egm 0
the stability of the orbits Sy, (N,N;I,J) to that of analyz- m 4 3
ing the matrix : ’
M ) . 0 0
M(0)= ][ [4)+TBLe®+T " !Ble %], (41) 0 0
m=1 and
where o=2—ZP— , p=0,1,2,...,L,—1,
2L, —1)w
9=o,—2£’1, S 42) - (46)
u u ¢=—Ji, ¢=0,1,2,...,J—1

and 4, and B}, are block circulant matrices
Al =pC(4,,CH,0,...,0,Co),
B} =bC(B,,,0,0,...,0,0) .

By this observation we obtain at once that M (8) is still a
circulant matrix and further simplification is possible.
Finally we obtain

D(6,¢)= ﬁ [Am+C”Tei(6+2¢)+cn+'-e—i(()+2¢)

m=1
+B, e®+B} e, (44)

where 4,,,C, ,CY, B, ,and B, are

FT—eGT fG;" 0 0
A, = %G'," FI'—eGT fG? 0 ,
€
00 0 =G
c =100 0 0
00 -+ 0 0
0 o 0 0
Ccr= O 0 0 0 , (45)
fG'," 0 0 0
0 o 0 o
%G{” 0 0 o0
Br; = M )
0 0 fG,:,"_, 0

Therefore, we arrive at a very simple formula to analyze
the stability of the constructed orbits by considering the
N X N matrices instead of the INJN X INJN matrix or the
N2X N? matrices argued in Ref. [5].

From the above discussion we can also conclude that
the stability of the constructed orbits S,,(1,N;I,J) and
Sy(N,N;I,J) cannot be better than that of the orbits
Sy (N, 1,1) because D (0,0) is just the stability Jacobi ma-
trix of Sy,(N,1,1). In this section we only consider the
two-dimensional CML in the case of nearest-neighbor
coupling; things should be much more complicated for
longer range couplings and an abundance of different spa-
tial patterns might be constructed from the known one-
dimensional orbits or the known two-dimensional orbits.
The method of simplifying the stability analysis can be
used to analyze other constructed orbits, which only need
minor changes.

V. CONCLUSION

We have constructed a series of spatially periodic or-
bits in both one- and two-dimensional CMLs, from the
known orbits of smaller phase space or smaller spatial
periodicity, without directly solving the modeling equa-
tions. The stability of the constructed orbits can be ana-
lyzed by considering much smaller matrices; especially in
the two-dimensional case the problem can be greatly
simplified. From the analysis we reach a conclusion that
the stability of the constructed orbits can never be better
than that of the original ones, or, in other words, an orbit
constructed from an unstable orbit is always unstable, but
it is possible for an orbit constructed from a stable orbit
to lose its stability by the enlargement of phase space, the
changing of the strengths and lengths of couplings, or the
changing of space configurations. In the one-dimensional
case we can construct spatially periodic orbits only from
the spatial period-2 orbits, but in the two-dimensional
case, a spatial periodic orbit in a one-dimensional CML
can always find its corresponding patterns in the two-
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dimensional case. In higher-dimensional symmetrically
coupled CMLs, it is possible to construct many orbits
from the orbits in a lower-dimensional CML and the dis-
cussion of the stability of the constructed orbits can be
greatly simplified as we have demonstrated in Sec. IV.

Finally, what we want to emphasize is that the models ex-
plored in this paper are coupled map lattices, but the
same manipulations can be carried out in systems of cou-
pled nonlinear oscillators. Thus our investigation can be
suitable for a variety of physical systems.
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FIG. 2. Spatial patterns predicted from the S, (2,1,1) orbit.
Pixels are black when x,(u,v)=p, and white when
x,(u,v)=z,. The system volume is 20X 20. (a) §,,(2,2;10,10),
B=1; (b) §,(1,2;20,10), B=3; (c) Sy(4,4;5,5), B=1; (d)
Sy(1,4;20,5), B=1; (e) $4(4,2;5,10), B=3.



